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Abstract. We introduce two kinds of discrete-time non-equilibrium lattice models (stochastic
cellular automata), which we call the creation process i, and the branching process #;. In
special cases the former process can be identified with the site or bond directed percolation
models. When the system is defined on 2 d-dimensional finite lattice with size L, these
processes are determined by 25° % 22° wransition matrices, My and M, respectively. It is
proved that subject to certain relations between the parameters of these models, My and the
transpose of ﬂ;_, are conjugate and thug the characteristic polynomials become equal to each
ather, det(My — AE) = det(#y — LE), for arbitrary L 2 n, where £ is the identity matrix.
Since dynamical critical exponents as well as critical values will be determined by the asymptotic
behaviour in the limit L — oo of the [arge eigenvalues of the transition matrix, our result implies
that, if continuous phase transitions and critical phenomena are observed, these two processes
belong to the same universality class. In proving the equality, we use the relation which is
called the coalescing duality in probability theory.

1. Introduction

Phase transitions occur in a wide variety of non-equilibrium lattice models such as the
basic contact process [1-3] and its modified or generalized processes [4-13], branching
annihilating random walks [14-17], multi-particle annihilation models [18-20, 6] and the
zGB model [21]. When the transition is continuous, critical phenomena are observed and
universality classes of non-equilibrium lattice models have been studied. Numerical studies
by Monte Carlo simulations [22] and series expansions [23] show that the critical phenomena
observed in the d-dimensional contact-process-type models belong to the same universality
class with the (4 -+ 1)-dimensional directed percolation (in short DP). Field-theoretical
arguments leads to the conclusion that the DF and the Reggeon field theory belong to
the same universality class [24]. This DP universality class is very wide and the following
statement is proposed for {0, 1}-valued models by Janssen [25] and Grassberger [26], which
is called the DP conjecture in Dickman [27]: if a model with a scalar order parameter
exhibits a continuous transition into a unique absorbing state, the critical behaviour is
generically of the directed percolation type. Although there is no counterexample to this
conjecture, its proof is still an open problem. We will observe more complicated phenomena
if the assumption of the DP conjecture is not satisfied [28-30] or the system has additional
conservation laws [15]. So far there has been no general criterion for the universality
classification of non-equilibrium lattice models,
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Consider a discrete-time version of the {0, 1}-valued non-equilibrium lattice mode] with
an absorbing state. When the system is defined on a d-dimensional finite lattice with size
L, the dynamics is described by a 25 x 2V transition matrix M. If we use the rule
in which each site is updated simultaneously, the system is also called srochastic cellular
automara [31]. Let Ag, A, Ao, ... be the eigenvalues of M;. Since an absorbing state
is a trivial stationary state, it gives a left eigenvector of M; corresponding to the largest
eigenvalue Ag = 1. Other eigenvalues depend on the parameters of model. For simplicity,
here we consider 2 one-parameter model with p denoting a parameter. We assume that there
is a continuous phase transition at p = p. in the thermodynamic limit L — oc; for p € p;
the stationary state is unique and given by the trivial absorbing state, while for p > p, there
is another active stationary state. As we have seen in many equilibrivm lattice models, it
is expected that critical exponents as well as the critical value p; can be determined by the
asymptotic behaviour as L — o¢ of the non-trivial eigenvalues {A;};31.

Kinzel [31] discussed phase transitions and critical phenomena of the stochastic cellular
automata by analysing the scaling behaviour of the largest non-trivial eigenvalue A;. He
noticed that the correlation time z(p, L) of the system with size L and a parameter p is
given as

t(p, L) = —(lar(p, L))" (1.1

He proposed the following scaling for t(p, L), which will hold asymptotically for large L
ande=p—p.— O

1 LI 1/v b
r(e, L) =b t(b ‘e, L) - (1.2)

for any scale factor b, Here z = vy /v, is the dynamical critical exponent. He calculated
the following quantity for large L:

Yy =lafv(p, L)/t{p, L — D)/ In[L/(L — 1)] (1.3)
and evaluated p, and z by the following asymptote for L — co:
Yp~L p>pe
Yo=z pP=pc (1.4)
Yr =0 P <pe.
Recently ben-Avraham et al [32] showed that the second non-trivial eigenvalue of the

trapsition matrix A, has its maximum at p.. Their argument implies that the dynamical
exponent 7 can be obtained by

2= — lim In(1 = 2a(p, L))

Lroo 2 (1.5

Both theories are phenomenologically based on the scaling assumptions and are far
from rigorous. However, we believe that p, and critical exponents are determined by the
asymptote of eigenvalues {;(p. L)};=1,2,3.... in L — co and thous the following statement
should be tree. Consider two different non-equilibrium Iattice models showing critical
phenomena, whose transition matrices are given by M, and M, respectively, for each L.
For a finite matrix M, let (A} = det(M — AE) be the characteristic polynomial, where E
is the identity matrix. Then if

m () = vy, (A) for any L (1.6)

then these two models belong to the same universality class,
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In the present paper we introduce two kinds of discrete-time non-equilibrium lattice
models, which we call the n-range creation process n, and the n-range branching process i,.
The former (resp. the latter) has 27 parameters {a4} (resp. {pa}) and is defined by a transition
matrix My (resp. M.} for the finite system with size L. Dynamics of these two processes
are quite different from each other and My ¢ My in general. However, we will prove
for n > 2 that if we put some relations between {a,} and {pa)}, the equality (1.6) holds.
This result implies that the processes #, and 7, belong to the same universality class, if
they show critical phenomena. Before starting a general argument, we first give a simple
example using the special case of the dimension d = 1 and the range n = 2 in section 2.
In section 3 we define the n-range creation process and the n-range branching process and
give the formulae by which we can derive My and My for any L > n (lemmas 3.1 and 3.2).
We also give the relations between the matrix elements of M and My (proposition 3.3),
which should be cailed the duality relation as explained in remark 3.1. Section 4 is devoted
to prove the main theorem (theoram 4.1). We give some remarks in section 5.

2. Demonstration

In order to explain the motivation of present study, we will consider here two processes 1
and 7, on a one-dimensional chain of L sites with a periodic boundary condition (L > 2).
Since the process n, can be constructed by using site-directed percolation on the two-
dimensional spatio-temporal plane {1,2,...,L} x {0, 1,2,...} 3 (x, ¢), we call it the SDP.
Tet {S.,} be a collection of independent and identically distributed {0, 1}-valued random
variables with an expectation {S;;) = p, 0 € p < 1. The process ; € {0, 1}(12-2 js a
Markov chain and the state at site x and time ¢ + 1 is determined by (see figure 1)

et (X)) = 8 (0 (3} + e (x + 1) = e () (x4 1) (2.1}

It should be noted that if ng(x) = &, the set of sites C = {{x, 1) : n,(x) = 1} is the directed
percolation cluster starting from (1, 0) on the spatio-temporal plane.

tme

X X+
t ® @ ® O ©C © o O
t+1 @ _ @ @ ®
Prob. p Prob. p Prab. p Prob, 0
time X X :
t @ ® ® O 0O @ O O
t+1 QO O O O

Prob. 1-p Prob. 1-p Prob. 1p Proh. 1

Figure 1. The elementary processes of the spp.
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time x-I  x  x+ x-1 x X+

tOz\\O t O & O

+1 0 @ @ +1Q O O

Prob. p Prob. 1-p
(a)

X-1 X X+
t k&o

l @9 @ @
(&)

time

Figure 2. (a) The elementary processes of the cep. Each particle branches with probability p
ar annihilates with probability 1— p. (&) If two particles land on the same site x, they coalesce
into one.

Define the state vector

Yr(n) =Probln, = {m(x) :x € {1,2,..., L1D. (2.2)
Then its transition is described by
Yenr) = ) Wr(mdMi(ns 141 (2.3)

[m)

and the 2% x 2L matrix My is called the transition matrix. Note that in Kinzel [31] and
ben-Avraham et al. [32] the transposed matrix of M is called the transfer matrix.
In the case of L = 2, the transition matrix of SDF is given by

(Ma)i,; =ProbQun1 (1) + 1741Q2) = ji2n 1) + (2} = 1)
1 0 0 0
(1-pY¥ (d-pp dI-pp p* (2.4)
A-p¥ U=-prp U-pp p* |-
(1-p* 0=-pp {{-pp P*

The other process 7; shall be called the coalescing branching process (CBP). This process
is regarded as an interacting particle system in the discrete time. If we regard the state
fir(x) = 1 as the occupation of {x, £} by a particle, the dynamics of particles are defined as
follows; each particle located at (x, ¢} branches to the two sites (x, #+1)and (x + 1,2+ 1)
with probability p or annihilates with probability 1 — p (see figure 2(a)). The process is
coalescing: if two particles land on the same site, they coalesce into one (see figure 2(b)).
For L = 2 the transition matrix of CBP is given by

1 0 G 0
- 1-p 0 O J2
My = l-p 00 P 23)
(=p* 0 0 2p-p°
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Although M, # M, we find
det{(My —AE) = (2p — p?)A%+ (— 1= 2p+ pHA3 424
= det(M; — LE) (2.6)
where E is the 4 x 4 identity matrix.
When L = 3, the transition matrices become 8 x 8. By using Mathematica, we find the

equality of characteristic polynomials also for this case. Now the problem is to consider
the cases L = 4. '

3. Transition matrices and duality relation

In this section we consider two kinds of discrete-time interacting particle systems on a finite
lattice with periodic boundary conditions, in which each lattice site can be occupied by at
most one particle. The former process will be called the n-range creation process, since the
creation rate of a particle on a site x at the time # + 1 depends on the particle configuration
on n sites (the site x and its neighbours). In the latter process, which we will call the -
range branching process, each particle branches and give birth to at most n particles on the
neighbouring sites. Consider a d-dimensional finite integer lattice with size L and periodic
boundary condition, Af) = {1,2,...,L}%. The state space is Xf’ = {0, I}Af) and the
processes are determined by the 22 % 2L transition matrices.

3.1. n-range creation process 1y

The r-range creation process n; on Af{” is a discrete-time Markov chain witht =0, 1,2, ....
At each site x ¢ Af), the random variable 7,(x) takes one of the two possible values;
n:(x) = 1 and #5,(x) = O representing occupancy or vacancy of a particle, respectively.
Let R, = {0,dy,ds,...,d,_1} be a set of n sites (n £ L), We name R, the range. We
assign a set of 2" parameters {as : A C Ry} with 0 € ay £ 1. Let Rf =R, +x =
{x,x+di,x+ds,...,x +d,—} and A* = A + x. We assume the translation invariance
of kinetics and define asx = a4. The value 74 (x) is determined depending on the
configuration {n,(s) : s € R}} by the following stochastic rule (see figure 3(a)). For
each x € A, if 7,(y) =1 for all ¥ € A¥ and #,(z) = O for all other z € RY \ A%, then

1 with probability aa

3.1
0 with probability 1—a4. @1

N1 {x) = [

For any configuration n, = {m,{(x) : x € Af)} eX f) we can define a set of sites as
A =xnx)y=1}. (3.2)
The process #, can be identified with the time evolution of the set A, ia ¥ ,Ed) = the collection
of subsets of AL, The 22* x22* transition matrix M, of the d-dimensional n-range creation
process is thus defined on Y,E‘” b Yéd) by

My(A, B) = Prob(An = B | A = A) (3.3)

where Prob(e;lw,) denotes the conditional probability of w; given w,.
For a finite subset § € j\_(LdJ , we define the following function:

Istr, Ay =] ]ne) [] @=n0on 34

xEA YES\A
for n € {0, 1}% and A C S. It is easy to confirm that M, is given by the following formula,
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[ ] O
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Figure 3. Examples with Rf = {x, x+e1. x-+2e(, x+e0, £+ -+ ez}, (@) The creation process:
ifm(y) = lfory € A% = {x, x+2e(, x+ez} and 7, (z) = O for z € RE\A® = [x+er, xter+ez},
ne+1(x) = 1 with probability ag 2., es. (6) The branching process: in this case a particle at x
branches and sends particles to the sites x € A¥ = {x, x + 2¢|, x - ¢2}. This branching occurs
with probability p.2e,.e,3. (¢) Particles at x and y branch simeltanecusly and send particles
inte A% and A%, respectively. The particles are coalescing.

Lemma 3.1. For o, m € X, let

To(lno(s) s € RIm)) = Y Irs(mo, Aaam(x) + (L — aa)(l — mi (x)] (3.5)

ACRz
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and
Te(mo, m)= [ w(nol):s € Ri}im(x))- (3.6)
xeal
Then
Mi(A, B) = ;;I,\fl(ﬂoa A)T1(n0, 1) po (i, B) g ex)
o

for A, B € Y, where 3 1ny - denotes the summation over all particle configurations in X @,

3.2. n-range branching process 7,

Assume that a set of parameters {ps : A € R,} is assigned such thar

0< pa<1 and > pa=1, (3.8)
ACR,

and we define pys = pu for A* = A + x. In the n-range branching process #;, a particle
at x branches into |A| particles with probability p4, where [4] is the number of sites in
a set A, and these offspring are sent one by one to each site in A* (see figure 3(b)). If
more than one particle are sent to one site, they coalesce into one particle. Therefore,
if Ay = {x : fi;(x) = 1} and each particle at x branches into A* at time ¢, then the set
A = {x : ffrp1(x) = 1} is given by

A= ] & | (39)

xed,

see figure 3(c). The transition matrix is defined by

ML (A, B} =Prob(A1 = B | Ar = A) (3.10)

for A, B € Y®.
For n € Xf) and A Y,Ed), we define

J(n, A) =[] ntx). (3.11)

xeAd

(We assume J (7, #) = 1.) Then the transition matrix My, of the n-range branching process
on A“ is given by the following formula.

Lemma 3.2, Forng,m € Xf), let

LOn(); {no(s) 15 € RN = A= m@) +m(@) Y pat (o, 4) (3.12)
ACR:
and
Tetmno) = [ &m0 {nols) :s € RID. (3.13)
xead?
Define
Qr(Aimo) =Y Ly (m, AT(m, no) (3.14)

{m}
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for A € Yf),ng € Xi’”. Then Qr(A; 1) can be uniquely represented by a linear
combination of {J (1, B) : B € Y?'} and the elements of the transition matrix {M.(A, B)}
are given as the coefficients

QL(A; 0} = Y My(A, B)J (ng, B). (3.15)
B

3.3. An example

In order to illustrate the previous formulae, we consider a simple case: d = 1,7 =2 and
Ry ={0,1}. We put ag =0, ay = ayy = a, ap,;y = b and pp; = piiy = 4, poy) = p.
pp=1—p—2q, where 0 € a,b,p,q €1 and p+ 29 < 1 are assumed. It is easy to
see that the 4 = 1 and r = 2 creation process can be identified with the d = 2 site (tesp.
bond) directed percolation with the site (resp. bond) concentration ¢, if a = & = o (1esp.
a=¢ and b= a2 —a)).
Following (3.5) and (3.12), we have

T ({no(x), molx + DY m ) = (1 =m0 — nolx + 1) — mix))

+n70(x)(1 — no(x + 1N[amx) + (1 — a}(1 — ni(x))]

+{1 — no(x))mo(x + Dlam (x) + (1 — a)(1 — ni(x))]

+10(@)na(x + DIbmx) + (1 - 51 — n1(x)] (3.16)
and
T (m(x); {mo(x), molx + 11} = (1 —m(x))

+m L — p —29) + gno(x) + gno(x + 1) + pro(®dnolx + D). (3.17)

When L =2, A = {1,2} and Ta(no, m) =71 X 72, Ta(m, m0) = %1 x %. Lemmas 3.1
and 3.2 give the following:

1 0 0 0
(1-a)? (1—-a)a (l-a)a &*

Mo=1 (1-a? (-aa (- @ (3.18)
(1-8? A~k (1-bk b
and
1 0 0 0
M= ThTO . 9 p . (3.19)

l—p—2q q q p
(1—p—29)* q(2—2p—3q) q(2-2p—3q) 2p—p*>+24*

If we put @ = b = p and g = (), these matrices become (2.4} and (2.5).

3.4. Duality relation

In this subsection we prove the following proposition.

Proposition 3.3. If
Pc if A#£g
G4 = { C:iCCR, Cna%e (3.20)
0 if A=6
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then the equalities

> ML(A,C)=-) My(B,C)
C:CNB#R C:CNA#D

hold for all A, B € ¥} with any L > n.

Proof. By the definitions of the transition matrices, (3.3) and (3.10),
> M40 =1 and > M0 =1.
c <

The equality (3.21) is thus equivalent to
Y MUA Q= ) Mu(BC).

C:CNB= C:CNA=0
The formuta (3.7) of lemma 3.1 gives
> ML(A,C) =Y Lo, ATelo, m) [ [ —mx))
C:.CNB=F {ne} 1m} " xeB

since the identity

> Lw@ O =10 -1t

C:CNB=p xeB

holds for any n € X}f[) and B € YE‘“ . On the other hand, we have

Y. Mu(B,CY=) 3 Mi(B,C) (o, C)lyw(no, AL\ A)
C:CNA=8 {m} C

since

Ym0, BY (o, AP\ A) =

{1 if ANB=0
{nod

0 otherwise

for any A, B € Y. The formula (3.15) of lemma 3.2 gives
RHS of (3.26) = Y  01(B; no)ym(no, AP\ 4).
{mal
Therefore, by the definition (3.14),
Y MuB,O =) Lo BT, mo)l e (mo, AL \ A)

C:CNA=Y [re] 1m)

=2 > Ll ATl —n, 1 =00 [TA = me) [] m».

{mo} {m} x<B yeaMp
Here we have used the identity

Lo (1 =0, AL\ A) = Liw (M0, 4) .
Comparing (3.24) and (3.29), we find that {3.23) follows if

£(B, no) = r(B, no}
for any B € Y, f‘r), o € Xgi), where

&B.mo) =) Telno.m) [ [ —m@)

{ml xeB

1825

(3.21)

(3.22)

(3.23)

3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(329

(3.30).

(3.31)

(3.32)
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and

rBu) = Tl—ml—n)[[A-mG)» [] mo). 333

Imt xeB }’EAE!)\B

Since T (n0, m1) and Tr(no, m) are defined by the products of z, and %, as (3.6) and (3.13),
respectively, simple calculation gives

£(B, no) = I’[{ > (1 —an)Ip;(no, A)] (3.34)
zeB LACR:

r(B, 10) ='1'[{ > pad(l- no,A)}- (3.35)
zeB LACR:

Using an identity similar to (3.25), we have

Yo padl—mo, Y= ps I Ig(m,C)

ACRE ACRE C:CCR;,CNA=0

pA}IR;F, (rl‘o C) . (3.36)

CCR: L:Agkg.AﬂC:ﬁ
Thus (3.31) is satisfied if

l—ax= Y. 'pc 337

C:CCR CNA=f
for any A € R,. 1t is easy to see that (3.37) is equivalent to the condition (3.20), because
of (3.8). O

For the example in section 3.3, the condition (3.20) is given asa = p+g and b = p+2g.
As a special case it is satisfied if a = b = p and g4 = 0 as we have shown in section 2.

Remark 3.1. The interacting particle systems are constructed by a method called the
graphical representation, where we consider the generalized directed percolation problems
on the spatio-temporal hyperplane. 'We can represent the a-range creation process 7,
and the n-range branching process 7, using the common gadgets on the same hyperplane
Af,_‘” x {0,1,2,...}. Since these two processes can be defined on a common probability
space, we can find that the following relation holds between the respective events with
probability 1:

{A4,NB#£P}={ANE £} (3.38)

for any A, B € Yffn and ¢ € {0,1,2,...), where A, = {x : n(x) = 1} and B, = {x :
fie(x) = 1} with Ag = A and By = B. By equating the probabilities of these two events,
we have

Prob(A; N B 5= B|Ag = A) = Prob(A N B, # 0| B, = B) (3.39)

which is called the coalescing duality relation. For more detail, see section 5b of Durrett [3].
It should be noted that the relation (3.21) is nothing but (3.39) with ¢t = 1. Constructing
two or more stochastic processes on a common probability space and making comparisons
among them is generally called the coupling technique and is well known as a useful tool
in probability theory [2]. In this subsection, however, we have used the basic properties of
the transition matrices of »; and #, and showed another derivation of the relation (3.21) for
making the present paper self-contained.
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Remark 3.2. The reader should be reminded that the ‘duality’ relation discussed by
Kinzel [31] regarding a mapping of rules of cellular automata is different from the
coalescing duality relation discussed in this paper. Dhar ef al [33] introduced another
duality transformation to relate the two-dimensional bond directed percolation with some
random resistance problem. This duality shall be called the planar lattice duality and is
also different from the coalescing duality. Tt is possible to extend Dhar’s argument [33, 34]
for the present n-range creation process, which contains the bond directed percolation as a
special case. More detail will be reported elsewhere in the near future,

4, Equality of the characteristic polynomials

For a finite matrix M the characteristic polynomial is defined by

yar(A) = det(M — AE) 4.1)
" where E is the identity matrix. Since the eigenvalues of M are given by the roots of the
equation ¥y (A) = 0, the equality yps,(A) = yup, (A) means the equality of all eigenvalues.
For a given A, we define the 2L x 22° matrices on ¥\ x ¥ as

Ve =(V4(4, B b i Acs “2)
+= V44, B)) = 0 otherwise ’
and .
1 if ADB
Vo= (V_(A, B)) = . (4.3)
0 otherwise .

Since we can make V., and V_ upper and lower triangular matrices with all diagonal
elements unity,

det(Vy) =det(V_)=1. 44)
In this section we will prove the following main theorem of the present paper.

Theorem 4.]. Consider the n-range creation process 7, with parameters {a4 : A € R,,} and
the n-range branching process with parameters {p4 : A € R,}.
(1) Let Mz and My be the transition matrices corresponding to #, and #, defined on a finite
lattice A(L‘”, respectively. If
pc if A#£9
@y = § C:CSR, CNAZD {4.5)
0 if A=0
then the equality
Y, () = ¥y, V) (4.6)
holds for any L =
(if) Let ¢ and ¢, be the left and the right eigenvectors of M with an eigenvalue A,
respectively. If (4.5) holds, then the corresponding left and the right eigenvectors of
M with the same eigenvalue A are given by quV"’ vy and V, V_g¢i, respectively,
where ¢} (resp. ¢;) denotes the transposed vector of ¢, (rcsp &),

We note in passing that the transpose of V. is equal to V_. Therefore proposition 3.3
and the following proposition give theorem 4.1, where M % denotes the transposed maitrix

OfML
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Proposition 4.2. I the duality relation (3.21) holds, My and Mi are conjugate. That is,
M} =WlM W (4.7
with W = V+V_.

Proof of Proposition 4.2, It is noted that the relation (3.21) is rewritten as

> Y ma.0= Y. > MuB.C 4.8)

D:DSE C:DEC D:DSA C:DEC
or equivalently

Y lpenlipeiMi(4, €)=Y > lpcalipgeMi(B.C).  (49)
D C D C

by using the indicator function

Lo — 1 if e is satisfied @.10)
i ) otherwise . )
By the definitions (4.2) and (4.3), (4.7) follows (4.9). O

5. Concluding remarks

In this paper we have introduced two kinds of discrete-time non-equilibrium lattice models,
the n-range creation process », and the n-range branching process 1, which are parametrized
by {as} and {pa}, respectively. Theorem 4.1 implies that if the process f; shows a
continuous phase transition at p4 = pac for A € R, and critical phenomena are observed,
then the process 7, also shows the phase transition and critical phenomena at a4 = a4
which is related with ps. by (4.5) and that these two critical phenomena belong to the same
universality class.

The existence of phase transitions are guaranteed for the present processes by the
following argument. First we consider the simplest case, 4 =-1 and n = 2 branching
process, given in section 3.3. If we assume that there is only one particle at time 0, the
expectation of particle number at time ¢ = 1 is {lm|) = 2p + 24, which is less than 1
for p < % — g. It is easy to prove that the trivial absorbing state is the vnique stationary
state for any initial states if p < % — g. On the other hand, by the contour method (i.e.
Peierls” argument, see, for example, Durrett [3]} we can prove that there is another active
stationary state if p > %%. Therefore there should be a critical line between these two
regions on a {p, g)-plane. Quite recently Liggeit [35] proved the following remarkable
results for the 4 = 1, n = 2 creation process with b = a. (i) If b < 2{1 — a), the trivial
absorbing state is the unique stationary state. (ii) If % <a < and b = 4a(l — a), there
is another active stationary state. For more details on the phase diagrams of these models,
see [3,31]. Next we consider general cases with # 2> 3. We find processes die out with
probability 1 if 37, 4cp, axg |AlPa < 1, where |A| denotes the number of sites in a set A.
If we choose parameters so that pjo,1; > E—?, there is a positive probability to have the active
stationary states. Then there shovld be a critical surface between these two regions in the
2"-dimensional parameter space.

It should be remarked that theorem 4.1 wili be generalized to other non-equilibrium
lattice models which have coalescing dual processes. However, the generalization to the
models which have no coalescing dual processes [36], the annihilation-type models such as
a branching annihilating random walk [6, 14-17] and multi-species models is not trivial and
should be studied in the future.
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