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Abstract We introduce two kinds of discrete-time nonequilibium lattice models (stochastic 
cellular automata), which we call the creation process qt and the branching process &. In 
special cases the former process c m  be identified with the site or bond directed percolation 
models. When the system is defined on a d-dimensional finite lanice with size L, these 
processes are determined by 2Ld x 2Ld transition matrices, ML and M L ,  respectively. It is 
proved that supject to certain relations between the parameters of these models. ML and the 
transpose of ML me conjugate and thus the characteristic polynomials become equal to each 
other. det(ML - A E )  = det(& - AE), for arbitrary L 2 n, where E is the identity matrix. 
Since dynamical critical exponents as well os critical values will be determined by the asymptotic 
behaviour in the limit L -f m ofthe large eigenvalues of the transition matrix, our result implies 
that, if continuous phase tlansitians and critical phenomena are observed, these two processes 
belong to the same universality class. In proving the equality, we use the relation which is 
called the coalescing dunliry in probability theory. 

1. Introduction 

Phase transitions occur in a wide variety of non-equilibrium lattice models such as the 
basic contact process [1-3] and its modified or generalized processes [4-131, branching 
annihilating random walks [14-17], multi-particle annihilation models [18-20,6] and the 
ZGB model [U]. When the transition is continuous, critical phenomena are observed and 
universality classes of non-equilibrium lattice models have been studied. Numerical studies 
by Monte Carlo simulations [22] and series expansions [23] show that the critical phenomena 
observed in the d-dimensional contact-process-type models belong to the same universality 
class with the (d + 1)-dimensional directed percolation (in short DP). Field-theoretical 
arguments leads to the conclusion that the DP and the Reggeon field thmry belong to 
the same universality class [24]. This DP universality class.is very wide and the following 
statement is proposed for (0, 1)-valued models by Janssen [25] and Grassberger [26], which 
is called the DP conjecture in D ichan  [27]: if a model with a scalar order parameter 
exhibits a continuous transition into a unique absorbing state, the critical behaviour is 
generically of the directed percolation type, Although there is no counterexample to this 
conjecture, its proof is still an open problem. We will observe more complicated phenomena 
if the assumption of the DP conjecture is not satisfied [28-301 or the system has additional 
conservation laws 1151. So far there has been no general criterion for the universality 
classification of non-equilibrium lattice models. 

0305-4470/95/071817+14$19SO @ 1995 IOP Publishing Ltd 1817, 
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Consider a discrete-time version of the (0, 11-valued non-equilibrium lattice model with 
an absorbing state. When the system is defined on a d-dimensional finite lattice with size 
L, the dynamics is described by a ZLd x ZLd transition matrix ML. If we use the rule 
in which each site is updated simultaneously. the system is also called stochastic cellular 
automata [31].  Let ho, AI, 12, . . , be the eigenvalues of ML. Since an absorbing state 
is a trivial stationary state, it gives a left eigenvector of M L  corresponding to the largest 
eigenvalue Ao 1. Other eigenvalues depend on the parameters of model. For simplicity, 
here we consider a one-parameter model with p denoting a parameter. We assume that there 
is a continuous phase transition at p = pc in the thermodynamic limit L CO; for p g pc 
the stationary state is unique and given by the trivial absorbing state, while for p > pc there 
is another active stationary state. As we have seen in many equilibrium lattice models, it 
is expected that critical exponents as well as the critical value pc can be determined by the 
asymptotic behaviour as L -+ CO of the non-trivial eigenvalues { A i ] j y .  

Kinzel [31] discussed phase transitions and critical phenomena of the stochastic cellular 
automata by analysing the scaling behaviour of the largest non-trivial eigenvalue A l .  He 
noticed that the correlation time r ( p ,  L )  of the system with size L and a parameter p is 
given as 

(1.1) 
He proposed the following scaling for ~ ( p ,  L ) ,  which will hold asymptotically for large L 

~ ( p .  L )  = -gnh l (p ,  U ) - ' .  

and E = p - pc -+ 0 

for any scale factor b. Here z = y / v ~  is the dynamical critical exponent. He calculated 
the following quantity for large L: 

YL = ln[r(p, L ) / s ( P ,  L - 1)1/In[L/(L - 111 (1.3) 

and evaluated pc and z by the following asymptote for L -+ CO: 

Yr. L P ' P c  

Y'=z P = P .  
YL'O P < P c .  

Recently ben-Avraham et al [32] showed that the second non-trivial eigenvalue of the 
transition matrix A2 has its  maximum^ at pc .  Their argument implies that the dynamical 
exponent z can be obtained by 

(1.5) 

Both theories are phenomenologically based on the scaling assumptions and are far 
from rigorous. However, we believe that p c  and critical exponents are determined by the 
asymptote of eigenvalues &(p. L)]i=1.23. ... in L -+ CO and thus the following statement 
should be true. Consider two different non-equilibrium lattice models showing critical 
phenomena, whose Wansition matrices are given by ML and f i ~ ,  respectively, for each L.  
For a finite matrix M, let y ~ ( l )  = det(h4 - AE)  be the characteristic polynomial, where E 
is the identity matrix. Then if 

Y M ~  (A) = yaL (A) for any L (1.6) 

then these two models belong to the same universality class. 
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In the present paper we introduce two kinds of discrete-time non-equilibrium lattice 
models, which we call the n-range creation process qr and the n-range branchingprocess Gr. 
The former (resp. the latter) has 2" parameters ( a A )  (resp. ( p a ) )  and is defined by a transition 
matrix ML (resp. r l?~, )  for the finite system with size L.  Dynamics of these two processes 
are quite different from each other and ML # r l ? ~  in general. However, we will prove 
for n > 2 that if we put some relations between { a ~ ]  and [PA), the equality (1.6) holds. 
This result implies that the processes qr and ijr belong to the same universality class, if 
they show critical phenomena. Before starting a general argument, we first give a simple 
example using the special case of the dimension d = 1 and the range n = 2 in seaion 2. 
In section 3 we define the n-range creation process and the n-range branching process and 
give the formulae by which we can derive MI, and &L for any L > n (lemmas 3.1 and 3.2). 
We also give the relations between the matrix elements of M L  and f i ~  (proposition 3.3), 
which should be called the duality relafion as explained in remark 3.1. Section 4 is devoted 
to prove the main theorem (theorem 4.1); We give some remarks in section 5. 

2. Demonstration 

In order to explain the motivation of present study, we will consider here two processes ql 
and on a one-dimensional chain of L sites with a periodic boundary condition (L > 2). 
Since the process qr can be consmucted by using site-directed percolation on the two- 
dimensional spatio-temporal plane (1.2,. . . , L ]  x (0, 1,2, .  . .) 3 ( x ,  t ) ,  we call it the SDP. 
Let {Sx,c) be a collection of independent and identically distributed {O, 1)-valued random 
variables with an expectation (Sx,c) = p ,  0 < p < 1. The process .qr E {O, 1]['.2...-L1 is a 
Markov chain and the state at site x and time f + 1 is determined by (see figure 1) 

(2.1) 

It should be noted that if q&) = &.I the set of sites C = [ ( x ,  t )  : qr(x)  = 1) is the directed 
percolation cluster starting from (1,O) on the spatio-temporal plane. 

v~+I(x)  = & , ~ ( v z ( x )  f o r @  + 1) - Vr(x)tlr(x + 1)). 

time x X + l  

i o  0 0 0 0 0 0 0  I 
J. t i l  e 0 0 0 

Prob. p Pmb. ~p Prob. p Prob. 0 

x Y+I time 

t .  0 0 0 0 0 0 0 I t+l 0 0 0 0 

Prob. 1-p Pmb. 1-p Prob. l p  Prob. 1 

Figure 1. The elementary processes of the SDP. 



1820 N Inui er a1 

x-1 x X + I  x-I x X + l  

t o  0 0 

f+1 0 0 0 f+l 0 0 0 

time 

Prob. I-p 

Figure 2 (a) The elementary processes of the CBP. Each panicle branches with probabilily p 
or annihilates with probability 1 - p .  (b) If two particles land on the same site x ,  they coalesce 
into one. 

Define the state vector 

Then its transition is described by 

and the Z L  x 2L matrix ML is called the transition matrix. Note that in Kinzel [31] and 
b e n - A d a m  er al. [32] the transposed matrix of M L  is called the transfer matrix. 

In the case of L = 2, the transition matrix of SDP is given by 

(Mz) i . j  = Prob(2~~+1(1) + Vt+l(2) = j12rli(l) + 4d2) = 0 

(2.4) 

O 1 .  = ! (1 - P Y  (1 - P) P (1 - P) P P2 

1 0 0 
(1 - P Y  (1 - P) P (1 -P) P P2 
(1 - PI2 (1 - P) P (1 - P) P PZ 

The other process it shall be called the coalescing branching process (CBP). This process 
is regarded as an interacting particle system in the discrete time. If we regard the state 
ir(x) = 1 as the occupation of ( x ,  t )  by a particle, the dynamics of particles are defined as 
follows; each particle located at ( x ,  t )  branches to the two sites (x ,  t + 1)and (x f 1, t + 1 )  
with probability p or annihilates with probability 1 - p (see figure 2(a)). The process is 
coalescing: if two particles land on the same site, they coalesce into one (see figure 2(b)). 
For L = 2 the transition matrix of CBP is given by 

r - 1 0 0 0 1  

J Mz= L (1 - p ) 2  0 0 2 p - p 2  

1 - p  0 0 p 
1 - p  0 0 p 

(2.5) 
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Although M2 # A&, we find 
det(Mz - AE) = (2p  - pz)Az + (- 1 - 2 p  + p2)h3 + A4 

= det(& - I E )  (2.6) 
where E is the 4 x 4 identity matrix. 

When L = 3, the transition matrices become 8 x 8. By using Mathematicu, we find the 
equality of characteristic polynomials also for this case. Now the problem is to consider 
the cases L > 4. 

3. Transition matrices and duality relation 

In this section we consider two kinds of discrete-time interacting particle systems on a finite 
lattice with periodic boundary conditions, in which each lattice site can be occupied by at 
most one particle. The former process will be called the n-range creetionprocess, since the 
creation rate of a particle on a site x at the time t + 1 depends on the particle con6guration 
on n sites (the site x and i ts  neighbours). In the latter process, which we will call the n- 
range branching process. each paaicle branches and give birth to at most n particles on the 
neighbouring sites. Consider a d-dimensional finite integer lattice with size L and periodic 
boundary condition, A:) = {1,2, . . . , L}d .  The state space is XF’ = IO, 1)”~ and the 
processes are determined by the ZLd x ZLd transition matrices. 

(d) 

3.1. n-range creation process q, 

The n-range creation process q, on A?) is a discrete-time Markov chain with t = 0,1,2, . . . . 
At each site x E A?’, the random variable qt (x )  takes one of the two possible values; 
qt (x )  = 1 and qt (x )  = 0 representing occupancy or vacancy of a particle, respectively. 
Let R,, = (0, dl, dz, . . . , dn-l]  be a set of n sites (n 6 L) ,  We name R, the range. We 
assign a set of 2” parameters {UA : A E R, ]  with 0 < U A  < I. Let Ri = R, + x = 
( x ,  x + d l ,  x + dz, . . . , x i- dn-l) and AX = A + x. We assume the translation invariance 
of kinetics and define = UA. The value q,+ l (x )  is determined depending on the 
configuration (q,(s) : s E R;] by the following stochastic rule (see figure 3(a)). For 
each x E Af’, if qr(y)  = 1 for all y E A’ and qt(z) = 0 for all other z E Ri   AX,^ then 

1 with probability a,, 
with probability 1 - ‘ a A .  

(3.1) 

For any configuration qt = ( q , ( x )  : x E A?”) E Xf’ we can define a set of sites as 

The process ql can be identified with the time evolution of the set A, in Yjd) = the collection 
of subsets of A?’. The ZLd xZLd transition matrix ML of the d-dimensional n-range creation 
process is thus defined on Yf’ x Yid) by 

A, = { X  : q t ( x )  = 1) .  (3.2) 

M L ( A ,  B )  = Prob(At+I B 1 At =A)  (3.3) 
where Prob(q1q)  denotes the conditional probability of w1 given W Z .  

For a finite subset S C A?), we define the following function: 

(3.4) 

for q (0, 1Is and A E S. It is easy to confirm that ML i s  given by the following formula. 
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-e* t 

t 

0 0 0  

0 . 0  

0 0 .  
Y 

0 0 0  

X 

t 

tfl 

ti-1 
( b )  

0 0 

0 0 

0 0 

+ 

A" y+q X 

.Y 0 

F i p 3 .  Examples with R; = ( x , x + c i . x + 2 e ~ , x f e z , x t e ~ + e ~ } .  (a)Thecreationprocess: 
ifaCv)= l fory  E A X = & , x + 2 e , . x + e ~ ~ a n d ~ , ( r ) = 0 f o r r  E RX AX=(x+e~.x+ei+ez}, 
q,+i(x) = I with probability a ~ u , > , , ~ ! .  (b) The branching process: In this case a particle at x 
branches md sends panicles to the sites x E Ax = ( r . x  t 2el, x t 4. This branching uccun 
with probability p~u,2~,,~~j. (e) P d c l e s  at x and y branch simultaneously and send particles 
into A" and AY, respectively. The panicles are coalescing. 

5!  
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and 

Then 

(3.6) 

(3.7) 

for A, B E Yf', where &,I. denotes the summation over all particle configurations in Xf).  

3.2. n-range branching process ijI 

Assume that a set of parameters ( p A  : A 5 RJ is assigned such that 

and we define pax = PA for A' = A + x .  In the n-range branching process f i t ,  a particle 
at x branches into (AI particles with probability P A ,  where ( A [  is the number of sites in 
a set A ,  and these offspring are sent one by one to each site in A* (see figure 3(b)). If 
more than one particle are sent to one site, they coalesce into one particle. Therefore, 
if AI = [ x  : & ( x )  = 1) and each particle at x branches into AX at time f ,  then the set 
&+I = [ x  : ijt+l ( x )  = 1) is given by 

= U AX 
xsii, 

(3.9) 

see figure 3(c). The transition matrix is defined by 

for A ,  B E yf). 
f i ~ ( A ,  B )  = Prob(A,+I = B I = A )  (3.10) 

For 7 E Xf) and A E Yfl, we define 

J h  A) = n rl(x). (3.11) 

of the n-range branching process 

T E A  

(We assume J ( q ,  $3) = 1.) Then the transition matrix 
on A, is given by the following formula. (d) . . . 

and 

(3.12) 

(3.13) 

(3.14) 
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for A E I'f), vo E X i d ) .  Then QL(A;  qo) can be uniquely represented by a linear 
combination of { J ( m  B )  : B E Yid'} and the elements of the transition matrix { ~ @ L ( A ,  B ) ]  
are given as the coefficients 

QL(A;  vo) = &(A9 B)J(vo, B ) .  (3.15) 
B 

(1 -ay (1 -a)a (1 -a)a a2 

(1 -a)2 (1 -a)a (1 -a)a a2 
(1 -b)' (1 - b)b (1 -b)b b2 

(3.18) 

and 

. (3.19) 

1 0 0 0 
1-p-2q 9 9 P 
I - p - Z q  4 4 P [ 

(1 - p - 2q)Z q(2 - 2 p  - 3q) q(2 - 2 p  - 3q) 2 p  - p 2  + 2q2 

If we put a = b = p and q = 0, these matrices become (2.4) and (2.5). 

3.4. Duality relation 

In this subsection we prove the following proposition. 

Proposition 3.3. If 

(3.20) 
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and 

Since T~(q0, ql )  and ? L ( ~ o ,  q1) are defined by the products of rz and 5, as (3.6) and (3.13), 
respectively, simple calculation gives 

Using an identity similar to (3.25). we have 

Thus (3.31) is satisfied if 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

for any A G R.. It is easy to see that (3.37) is equivalent to the condition (3.20), because 
of (3.8). I7 

For the example in section 3.3, the condition (3.20) is given as a = p f 4  and b = pf24. 
As a special case it is satisfied if a = b = p and 4 = 0 as we have shown in section 2. 

Remark 3.1. The interacting particle systems are constructed by a method called the 
graphical representation, where we consider the generalized directed percolation problems 
on the spatio-temporal hyperplane. We can represent the n-range creation process qr 
and the n-range branching process ij, using the common gadgets on the same hyperplane 
A, x {0, 1,2, . . .). Since these two processes can be defined on a common probability 
space, we can find that the following relation holds between the respective events with 
probability 1: 

(3.38) 

for any A, B E U?' and t E (0.1.2,. . .), where A, = { x  : qr(x) = 1) and E, = [ x  : 
& ( x )  = 1) with A0 = A and bo  B. By equating the probabilities of these two events, 
we have 

(4 

{A, n B # 0) = {A n E, # 0) 

Prob(A, n B # 0IAo = A) = Prob(A n Et # = B )  (3.39) 

which is called the coalescing duality relation. For more detail, see section 5b of Durrett 131. 
It should be noted that the relation (3.21) is nothing but (3.39) with t = I. Constructing 
two or more stochastic processes on a common probability space and making comparisons 
among them is generally called the coupling technique and is well known as a useful tool 
in probability theory [Z]. In this subsection, however, we have used the basic properties of 
the transition matrices of qr and i j r  and showed another derivation of the relation (3.21) for 
making the present paper self-contained. 
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Remark 3.2. The reader should be reminded that the ‘duality’ relation discussed by 
Kinzel [31] regarding a mapping of rules of cellular automata is different from the 
coalescing duality relation discussed in this paper. Dhar et a1 [33] introduced another 
duality transformation to relate the two-dimensional bond directed percolation with some 
random resistance problem. This duality shall be called the planar lattice duality and is 
also different from the coalescing duality. It is possible to extend Dhar’s argument [33,34] 
for the present n-range creation process, which contains the bond directed percolation as a 
special case. More detail will be reported elsewhere in the near future. 

4. Equality of the characteristic polynomials 

For a finite matrix M the characteristic polynomial is defined by 

yM(h)  = det(M - L E )  (4.1) 
where E is the identity matrix. Since the eigenvalues of M are given by the roots of the 
equation yM(h) = 0, the equality yM, (A) = yM2 (A) means the equality of all eigenvalues. 
For a given A!), we define the ZLd x ZLd matrices on Yid) x Yid’ as 

if A S 5  
otherwise 

V+ = (!‘+(A, B ) )  = 

and 
1 if A > B  
0 otherwise. 

V- (V-(A, E)) = 

(4.2) 

(4.3) 

Since we  can make V+ and V- upper and lower triangular matrices with all diagonal 
elements unity, 

In this section we will prove the following main theorem of the present paper. 

Theorem 4.1. Consider the n-range creation process qt with parameters (aa : A E R,J and 
the n-range branching process with parameters { P A  : A E RJ. 
(i) Let ML and &‘L be the transition matrices corresponding to qI and e, defined on a finite 

det(V+) = det(V-) = 1. (4.4) 

lattice AY’, respectively. If 
pc if A f 0  

if A = 0  
(4.5) 

holds for any L 2 n. 
(ii)Let &, and q~ be the left and the right eigenvectors of ML with an eigenvalue A, 

respectively. If (4.5) holds, then the corresponding left and the right eigenvectors of 
M L  with the same eigenvalue h are given by qiVr1V;’ and V+V-R, respectively, 
where qi (resp. $ij  denotes the transposed vector of (ph (resp. @A). 

We note in passing that the transpose of V+ is equal_to V-. Therefore proposition 3.3 
and the following proposition give theorem 4.1, where Mi denotes the transposed matrix 
of M L .  
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Proposition 4.2. If the duality relation (3.21) holds, ML and A?; are conjugate. That is, 

&; = W-IM, w (4.7) 
with W = V+V-. 

Proof of Proposition 4.2. It is noted that the relation (3.21) is rewritten as 

(4.8) 

or equivalently 

by using the indicator function 

if o is satisfied 
0 otherwise. 1kUl =~ (4.10) 

By the definitions (4.2) and (4.3), (4.7) follows (4.9). 0 

5. Concluding remarks 

In this paper we have introduced two kinds of discrete-time non-equilibrium lattice models, 
the n-range creation process qt and the n-range branching process qI, which are parametrized 
by [UA} and ( P A ] ,  respectively. Theorem 4.1 implies that if the process ij, shows a 
continuous phase transition at pa = for A C R. and critical phenomena are observed, 
then the process qI also shows the phase transition and critical phenomena at UA = (LAc 

which is related with pnc by (4.5) and that these two critical phenomena belong to the same 
universality class. 

The existence of phase transitions are guaranteed for the present processes by the 
following argument. First we consider the simplest case, d = ~ 1 and n = 2 branching 
process, given in section 3.3. If we aSsume that there is only one particle at time 0, the 
expectation of particle number at time i = 1 is (1q11) = 2p + 2q, which is less than 1 
for p e f - q. It is easy to prove that the trivial absorbing state is the unique stationary 
state for any initial states if p e f - q. On the other hand, by the contour method (i.e. 
Peierls' argument, see, for example, Durrett [3]) we can prove that there is another active 
stationary state if p > g. Therefore there should be a critical line between these two 
regions on a ( p ,  q)-plane. Quite recently Liggett 1351 proved the following remarkable 
results for the d = 1, n = 2 creation process with b > a. (i) If b e 2(1 - a). the trivial 
absorbing state is the unique stationary state. (ii) If 4 e a < I and b > 4a(l -a), there 
is another active stationary state. For more details on the phase diagrams of these models, 
see [3,31]. Next we consider general cases with II p 3. We find processes die out with 
probability 1 if CA:AGRm,A+.O l A l p ~  c 1 ,  where IAl denotes the number of sites in a set A. 
If we choose parameters so that p p , l )  > b, there is a positive probability to have the active 
stationary states. Then there should be a critical surface between these two regions in the 
Z"-dimensional parameter space. 

It should be remarked that theorem 4.1 will be generalized to other non-equilibrium 
lattice models which have coalescing dual processes. However, the generalization to the 
models which have no coalescing dual processes [36], the annihilation-type models such as 
a branching annihilating random walk [6,14-171 and multi-species models is not trivial and 
should be studied in the future. 
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